3月14日gpt震撼发布,gpt-4在识图能力、文字输入限制、回答准确率、创作等方面有了飞跃式的提升,gpt-4相比以往的ai都要更加具备实用性、和创意。
gpt虽然不能代替我们学习,但是我们可以借助gpt帮助我们学习。在学习过程中,我们可以把gpt看成一个很好地引擎,关键在于,g老师有很好的理解能力以及归纳能力。比起单一的搜索引擎,比如百度,它的回答非常的多元。举个例子:
向gpt提问“erp检测相关深度学习方法,及其达到的性能,论文出处”
首先,值得夸奖的是,gpt面对有歧意的问题,回答很完整,逻辑也非常有条理性,内容似乎没有遗漏问题的要点,理解了本意“erp检测常见的方法分类 类别的介绍 相关文献”。
为了证实gpt没有“胡言乱语”,接着我们对里面的文献进行内容核实。针对cnn方法中bashivan 等人提出的learning representations from eeg with deep recurrent-convolutional neural networks [1]。同时,这篇文献也出现在了rnn方法的相关文献中。接下来,我们在arxiv上找到了它,来源确认无误。但不对劲的是,标题和rnn方法相关。在下载后,仔细看文章,除了最主要研究的rnn方法,以及其它对比实验,里面也并没有介绍cnn方法。
虽然gpt出现了小小的错误,但是我们还是“原谅”它,继续求证其它文章。但是遗憾的是rnn方法中zhang等人提出的a deep learning approach to event-related potential detection in brain–computer interface systems在很多网页中没搜索到相关信息,当再次询问gpt的时候,其给出了原始答案相悖的信息,比如发行时间等。
2. 写论文英文摘要
(1)给出关键词,写英文摘要
这句话没有理解睡眠阶段、情绪识别和erp检测之间的联系,于是继续提问。
为了演示方便,我们采用deepl给大家翻译一下。
显然gpt还是没太理解。
(2)给出英文原文,gpt润色
这里我们选用deepsleepnet[2]的摘要作为即将要被润色的素材。
这样看来,gpt的润色效果还不错。
3. 解释代码
给出一段代码,让gpt解释代码的意思。下面结果来看,回答挺好理解。
除了以上演示的作用,gpt还可以帮忙调试代码的bug。虽然缺陷难免,但是性能已经超越了某些浏览器(而且没有广告)。总体使用体验是正确地使用gpt在科研方面是利大于弊的。本次使用有以下一些小建议:
首先,提出问题要有逻辑性,避免出现二义性的句子以及长难句等。
其次,gpt有一定的逻辑,在提问过程中,可以层层递进、循循善诱地提问,会发现它有别于浏览器的重大优点,可以得到除了问题本身更连贯的解答。
然后,不要赋予对gpt过多期待,它还是有一定的局限性。
最后,作为使用者,在享用gpt-4便利的同时,也应该持有谨慎的态度,核实gpt回答的出处,对找不到来源出处的东西存疑。
[1] bashivan, p., rish, i., yeasin, m., & codella, n.c. (2015). learning representations from eeg with deep recurrent-convolutional neural networks. corr, abs/1511.06448.
[2] supratak, akara , et al. "deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg." ieee transactions on neural systems & rehabilitation engineering pp.99(2017).
撰写人:杨叶泽盛
指导老师:李景聪