学习报告:pdcnnet—一个利用脑电图信号自动检测帕金森病的框架-k8凯发旗舰

学习报告:pdcnnet—一个利用脑电图信号自动检测帕金森病的框架

       本篇学习报告的内容为:基于脑电图信号的帕金森病自动检测框架,所参考的文献是《pdcnnet: an automatic framework for the detection of parkinson’s disease using eeg signals》,该文献发布时间为2021年。在本文中,实现了使用深度学习模型获得了最高的分类准确率100%(健康对照与服用药物的pd患者)。本文目的主要是对帕金森病早期患者辅助诊断,区分健康者和帕金森病患者,提出了一种基于脑电信号的自动、准确、鲁棒的pdcnnet模型。

1.研究背景

       帕金森病(parkinson’s disease,pd)是一种神经退行性疾病,它是由脑部基底神经节区域多巴胺的分泌减少导致的,其特征是运动缓慢(运动迟缓)、不自主震颤、僵硬和姿势不稳定[1]。长期以来,临床对 pd 患者的诊断和治疗都十分困难,目前仍主要根据行为量表,误诊率高,缺乏客观有效的手段检测患者的病情。

       脑电信号(eeg)则因其低幅度、高准确率而被用于pd检测,并广泛应用于其他神经系统疾病辅助诊断、脑功能康复等方面的研究。传统的机器学习方法需要几个人工步骤,如分解、特征提取和分类,但由于脑电信号非线性、非平稳和复杂的性质,手工分析这些信号是很困难的。为了克服这些限制,khare等人提出了使用平滑伪wigner ville分布(spwvd)与卷积神经网络(cnn)(即帕金森病cnn, pdcnnet)相结合的pd自动检测方法。

2. pdcnnet框架

2.1框架介绍

       脑电图信号具有非线性、非平稳、复杂等特点。因此,脑电信号的视觉筛选费时、繁琐且容易出现人为错误。利用短时间傅里叶变换(stft)、连续或离散小波变换、wigner ville分布(wvd)或spwvd,可以得到更多的eeg信号的隐藏信息。stft假设信号是平稳的,需要一个固定的长度和窗函数。cwt和dwt需要选择小波,而wvd由于低频分辨率和频域的交叉项而受到影响[2]。stft、cwt、dwt、wvd提供的分辨率较差,且存在时间和频率的交叉项。为了克服这一问题,利用spwvd将时间序列信号转换为tfr。spwvd由于同时在时域和频域引入了交叉项减小窗口,具有良好的分辨率和代表性的tfr。此外,时间长度和减频跨项窗口的选择是独立的。

图1.pdcnnet的原理图

2.2框架算法

       输入信号x(t)的spwvd的数学表示[3]为:

其中频域和时域的windows缩减交叉项分别用g(t)和h(t)表示。spwvd允许自由选择g(t)和h(t)的长度。

       spwvd通过减少时间和频率的交叉项干扰,可以提取出更有代表性和隐藏性的信息。与手工特征提取和分类相比,使用cnn可以同时提取和分类深度特征,大大减少了人工工作量。该cnn架构的参数如下图所示:

图2. cnn架构的系统配置

其中卷积运算的表示为:

3.实验和结果

3.1数据集

       本文使用了两个数据集,第一个数据集包括15名pd患者和16名hc受试者[4],它是在加州圣迭戈大学收集的,根据hoehn和yahr评分,pd患者平均病程4.5±3.5年,轻度至中度疾病(ii期和iii期)。第二个数据集由20名pd患者和20名年龄匹配的hc受试者的脑电图记录组成,这些受试者均来自马来西亚kebangsaan大学医院,7例pd患者处于iii期,11例为ii期,2例为i期,采用hoehn和yahr量表进行测量。pd患者(26.9±1.51)和hc患者(27.15±1.63)的mmse结果均在25-30的典型范围内。

3.2实验方式

       两个数据集都将每个通道的脑电图记录被分层成2-s一个样本。使用openneuro数据集(数据集1)分别获得用药期间pd (pdso)、不用药期间pd (pdsf)、hc脑电图文件1499、1500、1532个,从郑州大学人民医院数据集获得hc脑电图文件1588个,hc脑电图文件1571个。openneuro的数据维度pdso、pdsf、hc分别为1024×1499、1024×1500、1024×1532, pd、hc(时间samples×no)分别为256×1588、256×1571。为信号),对于数据集2。利用spwvd将得到的2 s期分层脑电信号转化为tfr。选择kaiser窗口来减少交叉项和时域和频域的干扰。在输入cnn模型之前,spwvd图像被调整到227×227,然后将tfr的二维图馈送给cnn进行自动特征提取和分类。cnn模型使用十倍交叉验证(tf-cv)开发。通过对两个数据集保持相同的设置来进行实验。epoch大小为60,批处理大小为75,学习率为0.0001,验证频率为3,将偏差和权值学习率设置为20,使用adam优化器对学习率进行优化。

3.3实验结果

       在pd自动检测实验中,pdcnnet模型的最高准确率为99.97%,灵敏度为100%,特异性为99.94,精密度为99.94%。其中两个数据集的结果如下:

                     

                                 

表1.第一个数据集的实验结果表

表2.第二个数据集实验结果表

4.总结和思考

       该论文提出的模型将spwvd图与cnn结合,并通过对两个开源脑电数据集的实验,获得了目前最高的分类准确率,证明了它的有效准确性。该模型用到的spwvd通过减少时间和频率的交叉项干扰,可以提取出更有代表性和隐藏性的信息。spwvd图有助于同时捕捉空间和时间细节,使其在分类pd和hc受试者时具有高度的可分辨性。

       但论文研究中也存在一些局限性,他们的研究只是利用这个数据集进行二进制分类。在他们的研究中,他们进行了细分eeg记录到2s一个样本,这允许他们从时频图像中捕获更重要的特征,以训练他们提出的cnn模型。样本图像越多,其模型的分类精度越高,但缺点是cnn的计算量大。

参考文献:

[1]   goetz, c.g. the history of parkinson’s disease: early clinical descriptions and neurological therapies.cold spring harb. perspect. med.2011,1, a008862.

[2]   s. k. khare and v . bajaj, “time-frequency representation and convolutional neural network-based emotion recognition,”ieee trans. neural netw. learn. syst., early access, jul. 31, 2020.

[3]   m. m. hoehn and m. d. y ahr, “parkinsonism: onset, progression, and mortality,”neurology, vol. 77, no. 9, p. 874, 2011.

[4]   a. p. rockhill, n. jackson, j. george, a. aron, and n. c. swann,“uc san diego resting state eeg data from patients with parkinson’s disease,” univ. california, san diego, ca, usa, tech. rep., 2020.

 

撰稿人:李建平

指导老师:邱丽娜


登录用户可以查看和发表评论, 请前往  登录 或  注册
scholat.com 学者网
免责声明 | 关于k8凯发旗舰 | 用户反馈
联系k8凯发旗舰:
网站地图